31 research outputs found

    Age-dependent differences in the pathogenesis of bovine respiratory syncytial virus infections related to the development of natural immunocompetence

    Get PDF
    The severity of respiratory syncytial virus (RSV) infections appears to differ with age in both humans and bovines. A primary RSV infection in naïve infants and in young calves runs a more severe course when they are 1–6 months old than in their first month of life. The relative lack of clinical signs in the first month of age may be due to high levels of maternally derived neutralizing antibodies or low exposure to infectious virus. This study examined whether age-dependent differences in the pathogenesis of bovine RSV (bRSV) between neonatal and young calves may be due to differences in age-dependent immunocompetence. To study the effect of age and immune parameters on bRSV disease in neonatal and young calves, neonatal (1-day-old) calves without maternally derived antibodies were infected experimentally with bRSV and the severity of disease and immune responses were evaluated in comparison with disease in similar 6-week-old infected calves. Neonatal calves had more extensive virus replication and lung consolidation, but lower pro-inflammatory [in particular tumour necrosis factor alpha (TNF-{alpha})] responses, specific humoral immune responses, lung neutrophilic infiltration and clinical signs of disease than 6-week-old calves. The lack of correlation between virus replication and clinical signs suggests an important role of pro-inflammatory cytokines, in particular TNF-{alpha}, in the disease. The capacity to produce pro-inflammatory TNF-{alpha} appeared to increase with age, and may explain the age-dependent differences in RSV pathogenesis

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10−8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10−5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15–0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1–0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈−0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Cranking the immunologic engine with chemotherapy: Using context to drive tumor antigen cross-presentation towards useful antitumor immunity

    No full text
    This review shows how tumor antigen cross-presentation is affected by the major therapeutic modalities including chemotherapy, radiotherapy, and surgery. We argue that this process could affect the way that a tumor works as its own cellular vaccine, and that it is differentially modulated by the choice of treatment

    Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all

    No full text
    Chemotherapy and immunotherapy can be either synergistic or antagonistic modalities in the treatment of cancer. Cytotoxic chemotherapy not only affects the tumor but also targets dividing lymphocytes, the very cells that are required to develop an immune response. For this reason, chemo- and immunotherapy have been seen as antagonistic. However, cell death can be immunogenic and the way in which chemotherapeutic drug kills a tumor cell is likely to be an important determinant of how that dying cell interacts with the immune system and whether the interaction will lead to an immune response. When a cell dies as the result of infection, the immune system responds rapidly and the system of Toll-like receptors (TLR) plays a key role in this process. In this review, we will briefly summarize the intracellular signaling pathways that link TLR ligation with immune activation and we will address the questions where and how TLRs recognize their targets

    Natural history of a recurrent Feline Coronavirus infection and the role of cellular immunity in survival and disease

    No full text
    We describe the natural history, viral dynamics, and immunobiology of feline infectious peritonitis (FIP), a highly lethal coronavirus infection. A severe recurrent infection developed, typified by viral persistence and acute lymphopenia, with waves of enhanced viral replication coinciding with fever, weight loss, and depletion of CD4+ and CD8+ T cells. Our combined observations suggest a model for FIP pathogenesis in which virus-induced T-cell depletion and the antiviral T-cell response are opposing forces and in which the efficacy of early T-cell responses critically determines the outcome of the infection. Rising amounts of viral RNA in the blood, consistently seen in animals with end-stage FIP, indicate that progression to fatal disease is the direct consequence of a loss of immune control, resulting in unchecked viral replication. The pathogenic phenomena described here likely bear relevance to other severe coronavirus infections, in particular severe acute respiratory syndrome, for which multiphasic disease progression and acute T-cell lymphopenia have also been reported. Experimental FIP presents a relevant, safe, and well-defined model to study coronavirus-mediated immunosuppression and should provide an attractive and convenient system for in vivo testing of anticoronaviral drug
    corecore